viernes, 13 de junio de 2008

IMPRESORAS DE PUNTO




En el sentido general, muchas impresoras se basan en una matriz de píxeles o puntos que, juntos, forman la imagen más grande. Sin embargo, el término matriz o de puntos se usa específicamente para las impresoras de impacto que utilizan una matriz de pequeños alfileres para crear puntos precisos. Dichas impresoras son conocidas como matriciales. La ventaja de la matriz de puntos sobre otras impresoras de impacto es que estas pueden producir imágenes gráficas además de texto. Sin embargo, el texto es generalmente de calidad más pobre que las impresoras basadas en impacto de tipos.
Algunas sub-clasificaciones de impresoras de matriz de puntos son las
impresoras de alambre balístico y las impresoras de energía almacenada.
Las impresoras de matriz de puntos pueden estar basadas bien en caracteres o bien en líneas, refiriéndose a la configuración de la cabeza de impresión.
Las impresoras de matriz de puntos son todavía de uso común para aplicaciones de bajo costo y baja calidad como las cajas registradoras. El hecho de que usen el método de impresión de impacto les permite ser usadas para la impresión de documentos autocopiativos como los recibos de tarjetas de crédito, donde otros métodos de impresión no pueden utilizar este tipo de papel. Las impresoras de matriz de puntos han sido superadas para el uso general en computación

martes, 3 de junio de 2008

DIAGRAMA DE MONITOR


FALLAS COMUNES DE PC

FALLAS COMUNES EN COMPUTADORAS PC.1. FALLA:EL EQUIPO NO DA VIDEO.· Verifique el cable de alimentación de AC (Cable A) y que el monitor este encendido. Trate de ubicar un cable para monitor que usted sepa que esta bueno (Cable B). Si con el cable A el monitor no enciende y con el cable B en monitor enciende, entonces el Cable A probablemente este abierto por dentro, en este caso asegúrese con un multímetro y reemplaza el cable.· Chequee que el cable RGB este conectado al conector de la tarjeta de video. Algunos cables RGB cuando están dañados o unos de sus cables internos están abiertos (a excepción del negro o tierras), las imágenes se mostraran con otros colores. En este caso, se deberá reemplazar el cable RGB completo ó se deberá ubicar la parte que esta dañada y repararla. Por lo general se dañan al inicio de su conector DB15, por lo que resulta mas practico cambiar el conector. Cuando el cable de tierra o negro del cable RGB esta dañado, se interrumpe la trasmisión de video al monitor (CRT).· Verifique la Pila del BIOS: Algunas tarjetas madre integradas o no integradas, no envían video cuando la pila del BIOS esta descargada, desinstale la pila, pruébela con un multímetro y si esta descargada, reemplácela por una nueva. OJO: Nunca intente adaptar pilas alcalinas al BIOS, porque no son a base de Litium, se explotan al cabo de cierto tiempo y sulfatan la tarjeta madre, causando daño irreversibles.· Destape la CPU, ubique el jumper del BIOS del equipo y resetéelo, luego encienda el equipo. Lo que sucede aquí es que muchos usuarios no saben configurar el BIOS de su equipo y ajustan mal la velocidad y los buses del procesador por lo que la BIOS muestra un información errónea o no envía video por medida de seguridad para no dañar el subsistema de video. Esto es una característica incorporada de alguna tarjetas madres como la M-766.· Con la CPU abierta verifique las memorias, limpie los pines y el banco, y vuelva a conectarlas. Esto sucede cuando la CPU esta muy sucia por dentro y las tarjetas y memorias tienen tanto tiempo que se forma una capa de sulfato de hierro o cobre en los pines de cada dispositivos, cortando la comunicación de dicho dispositivo con la tarjeta madre. En este caso, retire las memorias de sus bancos con mucho cuidado, limpie el banco con SQ Antiestático y proceda a limpiar casa uno de los pines de las memorias. Luego instálelas y encienda la computadora.· Pruebe su CPU con otras memorias que este usted sepa que funcionan bien. Instale una memorias que estén bien y pruebe su CPU, si envía video, pruebe cada una de las memorias antiguas con otro equipo, si no envía video el otro equipo, reemplace la (s) memoria(s) antiguas por una(s) nueva(s).· Verifique la tarjeta de video, limpie los pines y la ranura de expansión. Esto se hace con otra tarjeta madre, si la tarjeta madre piloto no envía video con la tarjeta de video sospechosa, reemplace la tarjeta de video.· Si su tarjeta madre tiene tarjeta de video integrada como el caso de las M-748, M-755, M-766, etc, intente probar instalando otra tarjeta de video PCI. Si con otra tarjeta de video funciona, lo mas probable es que el chip de video de la tarjeta madre este dañado. Se deberá reemplazar la tarjeta madre completa o en su defecto instalar una tarjeta de video permanentemente en el equipo.· Intente probar su procesador y memorias en otra tarjeta madre compatible. Instale su procesador y memorias en otra tarjeta madre compatible y pruébelos, si encienden, tenga seguro que la tarjeta madre antigua esta defectuosa o tiene problemas el BIOS.2. FALLA: LAS IMÁGENES DEL MONITOR NO TIENEN TODOS LOS COLORES.· Verifique que los controladores de video del adaptador de video estén bien instalados. Esto se hace viendo las propiedades del Sistema desde Windows en la opción Administrador de Dispositivos de la categoría Sistema del Panel de Control. Si tiene un signo de exclamación, significa que a) Los controladores del Dispositivo no están instalados correctamente, b) El dispositivo tiene un conflicto de recursos (IRQ) direcciones de memorias, c) la configuración del adaptador de video no esta bien y se corrige en las propiedades de la pantalla en la opción Configuración, asignando los colores a 16.000.000 o mas colores.· Si el equipo se inicia en Modo a Prueba de Fallos, nunca mostrara todos los colores. En este caso se deberá revisar el porqué esta iniciando en Modo A Prueba de Fallos. Esto esta casi siempre relacionado con errores lógicos o físicos del disco duros.Verifique el cable RGB del monitor, ya que algunos cables se abren por dentro, no se ven todos los colores porque faltara un color primario. Los cables RGB funcionan con tres colores primarios Rojo, amarillo y azul, si alguno de ellos fallara, las imágenes se verán amarillentas, azuladas o muy rojizas.3. FALLA: INSERT DISK BOOT AND RESTART, NO SE ENCUENTRA EL SISTEMA OPERATIVO u OPERATING SYSTEM NOT FOUND. ROM HALTED, etc.· Verifique que el BIOS del equipo detecte el Disco Duro de su PC. Esto se hace viendo presionado la tecla DEL o SUPR del teclado al momento en que el equipo efectué la lectura de la RAM y muestre el mensaje "PRESS DEL TO ENTER SET UP". Luego entrar en la Primera opción "STÁNDAR CMOS SET UP", ubicarse en la opción "PRIMARY DISK" y presionar "ENTER" o "INTRO". si aparece un mensaje indicando las característica del Disco Duros, entonces de deberá guardar los cambios efectuado en la CMOS, reiniciar el equipo y proceder a evaluar porque no ingresa al sistema.· Verifique el Jumper del HDD: Asegúrese que el Jumper este seleccionado en MASTER para discos primarios o SLAVE para discos esclavos. Si el disco esta en MASTER y aun así no lo detecta, lo mas probable es que la tarjeta controladora del HDD y el controlados del HDD en la tarjeta madre este dañada o el BIOS de la tarjeta madre este dañado. En ese caso deberá ubicar un disco usado, cambiar la tarjeta controlado del HDD con otra de iguales características y reemplazarla, actualizar la BIOS del equipo, instalar una tarjeta controlador de HDD ISA ó Instalar u nuevo disco duro.· Verifique los archivos de arranque del disco duro. Con un disco de Inicio de Windows 95 o 98 usted puede explorar el disco duros de su equipo, y asegúrese de que no existan errores lógicos o físicos en el mismo con un SCANDISK y de que los archivos del sistema se encuentre el sus directorios. Si faltase algún archivos del sistema como MSDOS.SYS; IOS.SYS, COMMAND:COM, WIN.COM, entre otros, deberá reinstalar de nuevo el sistema operativo para reponer los archivos faltantes· Verifique las fajas del o los HDD´s y CD-ROM´s Drivers. En ocasiones, cuando los equipos se destapan mucho y se mueven constantemente las fajas de forma brusca, de abren por dentro alguno de sus hilos y no permite la comunicación de la tarjeta madre con el o los discos. En este caso, se deberá reemplazar las fajas por unas nuevas.4. FALLA: EL PUNTERO DEL MOUSE NO SE MUEVE· Verifique que el cable del Mouse este correctamente instalado en sus puerto. Revise los controladores del Mouse en el administrador de dispositivos.· Asegúrese que el puerto COMM1 este habilitado en el BIOS del PC.· Chequee que la faja de interfaz del puerto COMM1 este conectada correctamente en la tarjeta madre y que este funcionando.· Destape el mouse y revise que los lectores ópticos este derechos y el cable no este abierto por dentro con un multímetro.· Cerciórese que el Mouse no este utilizando los mismo recurso de otros dispositivos.5. FALLA: TECLADO NO RESPONDE· Reinicie el equipo. Posiblemente Windows que colgó y el teclado no respondía.· Presione la tecla DEL para verificar si el teclado responde en modo MS-DOS. Debería entrar en la CMOS o BIOS del equipo.· Verifique el no exista un administrador de políticas del sistema o Virus que deshabilite el teclado al cargar Windows. Muchos administradores de Sistemas deshabilitan el teclado en el archivo MS-DOS.SYS.· Verifique el cable del teclado con un multímetro Si esta abierto uno de sus cable internos, debería reemplazar el cable completo por otro de igual modelo o reparar la parte dañada pero con estética. OJO. Nunca coloque otro cable diferente porque podría quemar el teclado y su puerto en la tarjeta madre cuando lo conecte.· Pruebe su teclado con otro equipo. Si no responde, reemplácelo por otro nuevo.6. FALLA: LA UNIDAD DE CD-ROM, CD-WRITER O DVD-ROM NO LEE LOS CD´S.· Revise que la unidad este funcionado y correctamente instalada en la computadora. Verifique el controlador de la Unidad de CD-ROM en la Opción Sistema de las Propiedades del Icono MI PC de Windows.· Verifique que el CD que esta introduciendo no sea una copia de otro CD, este rayado o con manchas dactilares fuertes. Las unidades que leen a menos de 8X por lo general tienen problemas para leer copias de otros CD´s, especialmente si están rayados o muy deteriorados.· Revise que el BIOS del PC reconozca la Unidad de CD-ROM. Para esto proceda como si se tratase de un Discos Duro.· Destape la CPU y verifique que la Unidad de CD-ROM esta configurada como Master o Slave según su posición en la faja de Discos.· Pruebe su Unidad de CD-ROM con otra faja de Discos Duros y reemplace la dañada.· Destape la Unidad de CD-ROM y verifique que todas las piezas mecánicas estén en su lugar especialmente el lector óptico. .Algunas unidades Híbridas producen muchos vibración cuando leen un CD y esto causa que el lector óptico se desajuste. En este caso de deberá ajusta el regulador del Lector óptico con un destornillador de precisión, hasta que ya no tenga problemas para leer los CD´s.· Si se trata de una Quemadora SCSI, revise la integrada de la tarjeta controladora y proceda como si fuese una unidad de CD-ROM convencional.7. FALLA: LA UNIDAD DE FLOPPY NO LEE LOS DISQUETES.· Revise la ranura de la Unidad y cerciórese que no exista ningún objeto incrustado en el cabezal. La mayoría de los problemas de estas unidades están asociadas al mal maltrato del usuario con el equipo. En algunos casos, los usuario no sacan los disquetes de manera apropiada y se queda la compuerta del Disquete incrustado dentro de la Unidad. En este caso se deberá desarmar la unidad de Floppy y retirar el objeto incrustado, asegurándose de que el resto de los dispositivos mecánicos Essen en orden y que no hallan cables o fajas partidas.· Chequee que la unidad de Floppy no esta sucia por dentro. Otro problema común, es que no se le hace mantenimiento a estas unidades y al cabo de cierto tiempo se forma una capa de polvo tan gruesa en los cabezales o el mecanismo de la unidad, que impide la buena lectura de los datos. Para este caso, se deberá destapar la unidad de Floppy y se limpiara con una Brocha pequeña o un soplador, pero con extremo cuidado.· Asegúrese que la unidad este encendida y bien conectada a la tarjeta madre. Destape la CPU y revise que el cable de alimentación de la unidad este conectado y enviando la energía necesaria para el funcionamiento de la unidad (Esto se verifica con un Multimetro). Luego verifique que la faja de interfaz este conectada.· Retire la faja de interfaz y pruebe la unidad con otra faja que usted separa que esta en buenas condiciones Si la unidad responde, entonces reemplace la faja antigua por la nueva faja.· Ingrese al BIOS de la PC en la opción "STANDARD CMOS SETUP" y cerciórese que el controlador de la tarjeta madre para la Unidad de Floppy este habilitada en Disco de 3 ½.8. FALLA: LA COMPUTADORA NO ENCIENDE· Revise que el regulador de voltaje este encendido y enviando energía a la fuente de la CPU. Esto ultimo se hace con la ayuda de un Multimetro.· Chequee la fuente de poder de la CPU desconectada de la Tarjeta madre. Esto se hace con la ayuda de un Multimetro· Pruebe su tarjeta madre con otra fuente de poder AT o ATX dependiendo del equipo. En la mayoría de los equipos ATX, lo que mas se suele dañar es la fuente de poder.

FLYBACK

¿Que hace el Flyback?El Flyback típico o Transformador de Línea consta de dos partes:1. Un transformador especial que junto con el transistor y circuitos de salida y deflexión horizontal, eleva el B+ de la fuente de poder (unos 120 V en los TV), a 20 a 30 KV para el TRC, y provee varios voltajes más bajos para otros circuitos.Un rectificador que convierte los pulsos de Alto Voltaje en corriente continua que luego el condensador formado en el TRC, filtra o aplana. El Alto Voltaje puede desarrollarse directamente en un solo bobinado con muchas espiras de alambre, o un bobinado que genera un voltaje más bajo y un multiplicador de voltaje de diodo-condensador.Varios secundarios que alimentan: sintonizador, circuitos de vertical, video y filamentos de TRC. De hecho, en muchos modelos de TV, la única fuente que no deriva del Flyback es para los circuitos de espera, necesarios para mantener memoria del canal y proporcionar el inicio (o arranque) de los circuitos de deflexión horizontal.2. Un divisor de voltaje que proporciona el enfoque y screen de la pantalla. En los potenciometros y circuito divisor se encuentran las principales causas de falta de foco, brillo excesivo, o fluctuación del enfoque y/o brillo. Un corto total también podría producir la falla de otros componentes como el transistor de salida horizontal. El Foco y Screen generalmente están arriba y abajo respectivamente. En algunos TV, el foco y screen son externos al flyback y susceptibles al polvo y problemas particularmente en los días húmedos.¿Cual es la diferencia entre el flyback y un transformador común?Aunque lo siguiente no siempre es estrictamente verdad para Flyback de TV y Monitor, es una buena apreciación general:(De: Sivasankar Chander (siva@bond.bocaraton.ibm.com)).La diferencia principal entre un transformador flyback y un transformador común, es que un flyback se diseña para guardar energía en su circuito magnético, es decir, funciona como un inductor puro, mientras que transformador común se diseña para transferir energía del primario al secundario con un mínimo de energía almacenada.En segundo lugar, un transformador flyback en su forma más simple tiene corriente que o fluye en su primario, o en su secundario (pero no ambos al mismo tiempo). (Esto es más complicado en la práctica debido a tiempos de corte finitos de los transistores y diodos, necesarios para los circuitos del amortiguador, etc).En tercer lugar, la relugtancia del circuito magnético de un flyback, normalmente es mucho más alta que la un transformador común. Esto es debido a un espacio de aire (entrehierro) cuidadosamente calculado para almacenar energía (es un inductor).Cuarto, los voltajes aplicados a un flyback en el primario casi siempre son rectangulares (pulsos), mientras que los transformadores regulares normalmente tienen voltajes sinusoidales aplicados a ellos.Quinto, las corrientes que fluyen a través de cualquier lado de un flyback, crecen o disminuyen en forma de diente de sierra lineal, mientras que en un transformador común, normalmente tiene corrientes sinusoidales.Finalmente, debido a las propiedades de los materiales del núcleo, los flyback operan convenientemente en el rango de 10^3 a 10^6 Hz, mientras que los transformadores comunes tienen un rango mucho más ancho, de unos Hz a 10^12 Hz.Yo debo haber tenido éxito confundiéndolo más allá de la redención, así que el mejor recurso para Usted, sería leer cualquier libro de texto introductorio en el tema para poder obtener un cuadro más claro.El origen del termino "Flyback"En los EE.UU. (posiblemente en toda América), el transformador que genera el alto voltaje en un Televisor, Monitor, o otro equipo que usa TRC, se llama "Flyback" o "Transformador flyback". En otras partes del mundo, o es LOPT (Line OutPut Transformer), Transformador de salida de líneas o simplemente LOP.El término "Flyback" se origina probablemente, debido a que el pulso de alto voltaje que carga el condensador del TRC es generado por la contracción del campo magnético en el núcleo del transformador, durante el periodo de retraso del haz de electrones en el TRC, el cual "flies back" (vuela atrás) hasta el inicio de una nueva línea de barrido o exploración. El flujo en el núcleo cambia despacio durante el barrido y se corta abruptamente cambiando de polaridad (HOT) y haciendo conducir al diodo damper durante ese "flyback" o periodo de retraso.Muchos fuentes conmutadas de alimentación y conversores DC-DC también son principalmente "del tipo flyback", transfieren energía a sus circuitos durante el mismo periodo del ciclo. Pero no hay ningún TRC involucrado y sus transformadores de alta frecuencia generalmente no se llaman transformadores flyback.LOPT y LOT (Transformador de salida de líneas) derivan del hecho de que está envuelto en el circuito de barrido y aprovecha esto para su rendimiento.¡Yo todavía pienso que Flyback es mucho más elegante! : -).Por supuesto, otros tienen su propia definición:(De: Sam Riner (riner@inet2000.com)).Cuando yo tenía casi 12 años, toqué el cable que va del FBT a la pantalla, era un modelo grande de TV, y yo volé hacia atrás ("flies back") aproximadamente cinco pies. Yo sé que ésta no es la historia real para el nombre, pero durante muchos años yo creí que lo era.Una pequeña historia¿Cuanto hace que comenzo a usarce el Flyback para obtener el alto voltaje?(De: Henry van Cleef (vancleef@netcom.com)).El suministro de HV (alto voltaje) desde el flyback, era un rasgo de los modelos RCA630 y GE801 de 1946. Ellos usaban un tubo (válvula) 807 o 6BG6 de salida horizontal, 6W4 damper, 1B3 rectificador.Los TV de preguerra (sí, los Televisores se comenzaron a fabricar para la venta con la norma NTSC después de su aprobación en 1941) generalmente usaban un transformador 60Hz y 2X2, similar a circuitos usados en osciloscopios de RCA y Dumont de la década de 1930."Television" de Zworykin/Morton (1940) tiene diagramas y proyectos para armar un TV que usa un tubo (válvula) 81 en el HV con un transformador de poder normal. Por supuesto, para profundizar en ese libro, usted tiene que saber bastante bien la teoría de tubo de vacío y muchas físicas, pero es una mina de oro sobre historia.(De: Brad Thompson (Brad_Thompson@pop.valley.net)).Algunos de los primeros equipos de TV usaron un oscilador de RF para generar la deflexión electrostática por alto voltaje para los TRCs, típicamente incluían un 6V6 oscilador y 1B3 (o 1X2) como rectificador.¿Por qué se combinan la deflexión y el alto voltaje?Una de las razones principales por las se diseñan TV y muchos monitores usando flyback en la deflexión horizontal, es simplemente: economía. Proporciona una manera barata de conseguir el alto voltaje y muchos, o la mayoría de los otros voltajes para el resto de circuitos. (Los monitores de computadora de alta calidad a veces usan un suministro de alto voltaje separado, para que la deflexión horizontal se use entonces solamente para la desviación del haz y así reducir interacciones entre las diferentes frecuencias de horizontal y el HV). Un beneficio colateral es, que si la desviación horizontal falla, el suministro de alto voltaje cae con él e impide al que se queme el fósforo del TRC por el la falta de deflexión de haz.El uso de la frecuencia horizontal en lugar de la frecuencia de línea de CA de 50 o 60 Hz permite usar componentes más pequeños, que si se usara un transformador de poder y condensadores de filtro.La construcción del FlybackAunque los detalles pueden variar un poco, todos los flybacks consisten en un conjunto de bobinados con un núcleo de ferrita. También puede contener diodos de alto voltaje y divisores de resistencias (a menudo con potenciometros de ajuste) para el foco y screen (G2).Un flyback típico incluye los componentes siguientes:Bobinado primario: un promedio de cien vueltas de alambre (ej., AWG #26). Esto es lo que se conecta en serie con el B+ al transistor de salida horizontal en un TV o monitor.Bobinado de Alto Voltaje: varios miles de vueltas. Este bobinado puede dividirse en varias secciones con rectificadores de alto voltaje en serie con cada una o puede ser un solo bobinado. Una alternativa es un enrollado que proporcione un voltaje más bajo y que use un multiplicador de voltaje (escalera diodo-condensador) para alcanzar lo requerido por el TRC. Se usa alambre muy fino (ej., AWG #40). Lo primordial es alcanzar el alto voltaje necesario para alimentar el TRC con rectificador o multiplicador.Algunos TV y monitores usan un multiplicador de voltaje, físicamente separado (externo al flyback). En este caso, el bobinado de alto voltaje del flyback genera unos 6 a 10 KVAC y el multiplicador eleva esto generalmente X3 o X4 a 20 a 30 KVDC. El divisor de foco y screen (G2) generalmente es parte del multiplicador en estos casos.Divisor resistivo para el enfoque y aceleración (G2). Esto probablemente se alimentará de una única bobina de la serie (si las usa). A menudo se incluyen en el flyback, ajustes para el enfoque y screen de la imagen. Las conexiones de este divisor pueden estar conectadas a los pines en la base del flyback o pueden tener sus propias conexiones separadas, con cables que se conectan al zocate o la placa del TRC.Bobinados auxiliares: de un par de espiras (para el filamento de TRC) a varios cientos (para una fuente reforzada). Proporcionan varios voltajes para el TV o monitor: el filamento de TRC, fuente para los circuitos lógicos y analógicos, etc. La medida de estos bobinados dependerá de los requisitos de cada caso. Están conectados a los pines para soldar en la base del flyback.Núcleo de la ferrita: consistente en dos piezas en forma U sujetadas con abrazaderas, tornillos o pegadas. Entre ambas piezas hay unas aberturas de décimas de mm creadas por un par de espaciadores.La mayoría del flybacks modernos tienen todos los bobinados en el mismo lado del núcleo. El primario y los bobinados auxiliares se enrollan separadamente, aislados bajo el bobinado de alto voltaje. Los bobinados de alto voltaje constituyen muchas capas y contienen material aislante entre ellas.Los otros componentes se montan en una parte separada del bobinado y la unidad entera es rellenada con un compuesto Epoxy. Parte del núcleo queda generalmente accesible.Un flyback no es un transformador común. Su núcleo de ferrita tiene un espacio (entrehierro). Almacena energía en el campo magnético del núcleo durante el barrido con su corriente de rampa ascendente. También se acopla energía a ciertos secundarios durante el barrido. Sin embargo, la energía se envía casi exclusivamente al bobinado secundario de alto voltaje (HV) cuando la corriente del primario se corta al final del barrido o exploración (probablemente de esto proviene el nombre flyback, porque ocurre durante el retorno del haz de electrones).El tipo de acoplamiento depende de la dirección de los rectificadores en el secundario del flyback:_ _ \/ _/\_ B+ ------+ +---->-----+---o +V1 B+ ------+ +---->-----+---o +HV o ):( o Scan o ):( Flyback ):( Rectifier __ ):( Rectifier __ ):( --- ):( --- ):( ):( _/\_ ):( _/\_ ):( o HOT ------+ +------------+--+ HOT ------+ +------------+--+ __ __ - -Aquí, V1 es un ejemplo típico de un secundario auxiliar que rectifica el semiciclo de exploración y HV es el ejemplo de rectificación del semiciclo de retorno (flyback).La proporción del número de espiras para cada caso, no se calcula solo en base a los voltajes esperados sino también al campo magnético al momento del corte (determinado por el diseño del circuito de salida horizontal).El espacio o entrehierro es crítico para el funcionamiento apropiado y es normalmente determinado por algún separador de plástico. ATENCION: si usted desmonta el núcleo por cualquier razón, marque cada uno y los coloca exactamente en la misma posición .Por qué usted no puede fabricar un Flyback o reconstruir uno maloDesmonte un flyback y usted entenderá por qué no recomiendo esto, a menos que el futuro del universo entero dependa de ello! Usted necesitaría equipo especializado solo para enrollar la bobina de alto voltaje.Esto no es algo usted puede hacer a mano en su sótano y el único problema no son los varios miles de vueltas de alambre casi invisible usado en un flyback típico. Para soportar los voltajes tan altos sin formar arco y minimizar la capacitancia entre las bobinas, el enrollando de alto voltaje se construye de muchas capas individuales (quizás 50 capas),usando un alambre muy fino (#40 típico, casi como un cabello humano). Cada capa debe enrollarse absolutamente plana con los alambres juntos lado a lado y entonces individualmente debe aislarse con cinta de mylar. ¡Simplemente respirando sobre tal alambre se rompería, seria muy difícil terminar un bobinado de varios miles de espiras en perfecto orden!Las otras partes: primario y secundarios bajo voltaje, el divisor de foco y screen, y los rectificadores de alto voltaje, que junto con el bobinado de alto voltaje y cables para el TRC son sellados con Epoxy.¡Olvídese de eso, Usted tiene cosas mejores para hacer que pasarse una semana con un transformador!¿Por qué fallan los transformadores Flyback?Aunque los flyback en ocasiones pueden dañarse por fallas en otra parte del TV o monitor, como la fuente de poder o los circuitos de desviación, en la mayoría de los casos, que ellos simplemente expiran por si solos. ¿Por que?Los Flybacks tienen bobinas con muchas capas de alambre muy muy fino con aislamiento muy muy delgado. Su ensamblaje entero es rellenado con una resina de Epoxy que se vierte en él y se endurece.De alguna manera, éstos son sólo cortos circuitos esperando ocurrir.Los Flybacks se calientan durante el uso y esto lleva al deterioro de la aislación. Cualquier imperfección, grietas, o arañazos en el aislamiento o burbujas de aire y impurezas en el relleno Epoxy contribuyen al fracaso. Los ciclos de temperatura y los defectos industriales producen grietas en el material Epoxy que reducen la capacidad de aislamiento, particularmente en el área de los bobinados de alto voltaje, rectificadores, y red divisora de foco/screen. Además, ellos también vibran físicamente a cierta magnitud. Y una cantidad de otros factores que sin duda alguna también son de importancia.Una vez que se produce una avería (chispeando o formando arco), es normalmente el final.

martes, 20 de mayo de 2008

TUBO DE RAYOS CATODICOS

El Tubo de Rayos Catódicos (CRT o Cathode Ray Tube en inglés), fue inventado por Karl Ferdinand Braun y a su desarrollo contribuyeron los trabajos de Philo Farnsworth.
Este componente es un dispositivo de visualización utilizado principalmente en monitores, televisiones y osciloscopios, aunque en la actualidad se tiende a ir sustituyéndolo paulatinamente por tecnologías como plasma, LCD, DLP, etc.

Orígenes
El tubo de rayos catódicos, o CRT, fue desarrollado por Ferdinand Braun, un científico Alemán, en 1897 pero no se utilizó hasta la creación de los primeros televisores a finales de la década de 1940. A pesar de que los CRT que se utilizan en los monitores modernos tuvieron muchas modificaciones que les permitieron mejorar la calidad de la imagen, siguen utilizando los mismos principios básicos.
La primera versión del tubo catódico fue un diodo de cátodo frío, en realidad una modificación del tubo de Crookes con una capa de fósforo sobre el frontal. A este tubo se le llama a veces tubo Braun. La primera versión que utilizaba un cátodo caliente fue desarrollada por J. B. Johnson y H. W. Weinhart de la sociedad Western Electric. Este producto se comercializó en 1922.
Funcionamiento

El monitor es el encargado de traducir a imágenes las señales que provienen de la tarjeta gráfica. Su interior es similar al de un televisor convencional. La mayoría del espacio está ocupado por un tubo de rayos catódicos en el que se sitúa un cañón de electrones. Este cañón dispara constantemente un haz de electrones contra la pantalla, que está recubierta de fósforo (material que se ilumina al entrar en contacto con los electrones). En los monitores a color, cada punto o píxel de la pantalla está compuesto por tres pequeños puntos de fósforo: rojo, azul y verde. Iluminando estos puntos con diferentes intensidades, puede obtenerse cualquier color.
Ésta es la forma de mostrar un punto en la pantalla, pero ¿cómo se consigue rellenar toda la pantalla de puntos? La respuesta es fácil: el cañón de electrones activa el primer punto de la esquina superior izquierda y, rápidamente, activa los siguientes puntos de la primera línea horizontal. Después sigue pintando y rellenando las demás líneas de la pantalla hasta llegar a la última y vuelve a comenzar el proceso. Esta acción es tan rápida que el ojo humano no es capaz de distinguir cómo se activan los puntos por separado, percibiendo la ilusión de que todos los píxels se activan al mismo tiempo.

La visualización mediante barrido

Tubo de barrido en color

1: cañones de electrones

2: haces de electrones

3: máscara para separar los rayos rojos, azules y verdes de la imagen visualizada

4: capa fosforescente con zonas receptivas para cada color

5: gran superficie plana sobre la cara interior de la pantalla cubierta de fósforo
En el caso de los televisores y de los monitores de computador modernos, todo el frontal del tubo se obtiene por escáner según un recorrido definido, y se crea la imagen haciendo variar la intensidad del flujo de electrones (el haz) a lo largo del recorrido. El flujo en todas las TV modernas es desviado por un campo magnético aplicado sobre el cuello del tubo por un "yugo magnético" (magnetic yoke en inglés), que está formado por bobinas (a menudo dos) envueltas sobre ferrita y controladas por un circuito electrónico. Éste sería un barrido por desviación magnética.
La visualización vectorial




Tubo de osciloscopio

1: electrodos que desvían el haz

2: cañón de electrones

3: haces de electrones

4: bobina para hacer converger el haz

5: cara interior de la pantalla cubierta de fósforo
En el caso de un osciloscopio, la intensidad del haz se mantiene constante, y la imagen es dibujada por el camino que recorre el haz. Normalmente, la desviación horizontal es proporcional al tiempo, y la desviación vertical es proporcional a la señal. Los tubos para este tipo de usos son largos y estrechos, y además la desviación se asegura por la aplicación de un campo electrostático en el tubo mediante placas (de desviación) situadas en el cuello del tubo. Este clase de desviación es más rápida que una desviación magnética, ya que en el caso de una desviación magnética la inductancia de la bobina impide las variaciones rápidas del campo magnético (ya que impide la variación rápida de la corriente que crea el campo magnético).
Visualización vectorial de los ordenadores
Los primeros monitores gráficos para ordenadores utilizaban tubos de visualización vectorial similares a los de los osciloscopios. Aquí el haz trazaba líneas entre puntos arbitrarios, repitiendo el movimiento lo más rápidamente posible. Los monitores vectoriales se utilizaron en la mayor parte de los monitores de ordenador de finales de los años 1970 hasta la mitad de los años 1980. La visualización vectorial para ordenador no sufre de aliasing ni pixelización, pero están limitados ya que sólo pueden señalar los contornos de las formas, y una escasa cantidad de texto, preferiblemente de un tamaño grande. Esto es así porque la velocidad de visualización es inversamente proporcional al número de vectores que deben dibujarse y "rellenar" una zona utilizando muchos vectores es imposible, así como escribir una gran cantidad de texto. Algunos monitores vectoriales eran capaces de mostrar varios colores, a menudo utilizando dos o tres capas de fósforo. En estos monitores, controlando la fuerza del haz de electrones, se controla la capa alcanzada y en consecuencia el color mostrado, que generalmente era verde, naranja o rojo.
Otros monitores gráficos utilizaban tubos de almacenamiento (storage tube). Estos tubos catódicos almacenaban las imágenes y no necesitaban refresco periódico.
Monitores en color



Principio
Los monitores en color utilizan tres materias agrupadas en un punto, por lo que el frontal del tubo está cubierto de puntos minúsculos. Cada una de estas materias produce un color si es sometida a un flujo de electrones. Los colores pueden ser el rojo, el verde o el azul. Hay tres cañones de electrones, uno por cada color, y cada cañón sólo puede encender los puntos de un color. Hay dispuesta una máscara en el tubo antes del frontal para evitar que interfieran los electrones de varios cañones.
Protecciones
El vidrio utilizado en el frontal del tubo, permite el paso de la luz producida por el fósforo hacia el exterior, pero en todos los modelos modernos bloquea los rayos X generados por el impacto del flujo de electrones con una gran energía. Por esta razón el vidrio del frontal está lleno de plomo (es pues vidrio cristal). Gracias a ello y a otras protecciones internas, los tubos pueden satisfacer las normas de seguridad, que son cada vez más severas en lo que se refiere a la radiación.
Colores mostrados
Los tubos catódicos tienen una intensidad característica en el flujo de electrones, intensidad luminosa que no es lineal, lo que se denomina gamma. Para los primeros televisores, el gamma de la pantalla fue una ventaja, ya que al comprimir la señal (un poco a la manera de un pedal de compresión para una guitarra) el contraste se aumenta (nota: no se habla de compresión numérica, sino de compresión de una señal, que puede estar definida por una reducción de aquello que tiene un nivel alto y un aumento de lo que es más bajo). Los tubos modernos tienen siempre un gamma (más bajo), pero este gamma se puede corregir para obtener una respuesta lineal, permitiendo ver la imagen con sus verdaderos colores, lo que es muy importante en la imprenta entre otras cosas.
Electricidad estática
Algunas pantallas o televisores que utilizan tubos catódicos pueden acumular electricidad estática, inofensiva, sobre el frontal del tubo, lo que puede implicar la acumulación de polvo, que reduce la calidad de la imagen. Se hace necesaria una limpieza (con un trapo seco o un producto adecuado, ya que algunos productos pueden dañar la capa anti-reflejo, si ésta existe).
Los magnetos


Los magnetos no deberían ser puestos nunca cerca de un monitor CRT, ya que ellos pueden provocar la magnetización que causará colores equivocados en el área magnetizada. Éste es un problema de "pureza", porque golpea la pureza de uno de los colores primarios. El magnetismo provoca indeseadas deflexiones de electrones. Éste puede ser muy caro a corregir, aunque pudiera corregirse en manera solo después de algunos días o semanas. La mayor parte de los televisores modernos y casi todos los monitores de ordenador han incorporado un aparado llamado Degaussing que reduce o elimina los campos magnéticos indeseados.
Es posible comprar o construir un dispositivo exterior de Degaussing que puede ayudar a desmagnetizar los más viejos monitores o en casos donde es ineficaz el aparato incorporado. Un transformador, que produce un gran campo magnético alternado, puede ser también usado como degauss de un monitor teniéndolo al centro del monitor, activándolo, y moviéndolo lentamente en círculos concéntricos nunca más anchos del bordo del monitor, hasta que los colores brillantes no pueden ser más visualizados. Claramente durante la operación es necesario ver los colores, por lo tanto hace falta tener el monitor encendido. Este proceso puede necesitar ser repetido muchas veces para remover algunas magnetización. En casos extremos, dónde hayan sido utilizados magnetos demasiado potentes, es probable que la deformación sea permanente.
Seguridad y riesgos por la salud
Campos EM
Algunos creen que los campos electromagnéticos emitidos durante el funcionamiento del tubo catódico puedan tener efectos biológicos. La intensidad de este campo se reduce a valores irrelevantes dentro de un metro de distancia y en todo caso es más intenso a los lados de la pantalla antes que de frente.
Rayos X
Como ya señalado los tubos a colores emiten una pequeña cantidad de rayos X, bloqueados para la mayor parte del espeso vidrio al plomo de la pantalla. El Food and drug administration americano ahora establece un límite de 0,5 mR/h (miliroentgen por hora) por la intensidad de los rayos X a la distancia de 5 cm de la superficie externa de un aparato televisivo. (Rif. [1])
Riesgo de implosión
Al interior del tubo es practicado un gran vacío, por lo que toda su superficie actúa constantemente la hidrostática (1 kg/cm 2 ). Ésta representa una conspicua acumulación de energía potencial que puede librarse bajo forma de una implosión en caso de perjuicio del vidrio. En los tubos de los modernos televisores y monitores la parte frontal es robustecida con la interposición de láminas plásticas, de modo que pueda resistir a los choques y no se produzcan implosiones. La restante parte del tubo y en particular el cuello son en cambio muy delicados.En otros tubos, como por ejemplo los osciloscopios, no existe el refuerzo de la pantalla, en cambio se usa una pantalla plástica antepuesta.El tubo catódico tiene que ser manejado con atención y competencia; se tiene que evitar en particular levantarlo por el cuello o por los puntos de propósito previstos.
Toxicidad de los fósforos
En los viejos tubos fueron empleados como fósforos materiales tóxicos, ahora reemplazados por otros más seguros. La implosión o en todo caso la rotura del vidrio causa la dispersión de estos materiales. En la liquidación del tubo se tiene que tener en cuenta la presencia de plomo, que es considerado un contaminante.
Imágenes bombillas
En los aparatos televisivos el sfarfallio producido por el continuo barrido de imagen, 50 veces al segundo pero de modo entrelazado, o sea primero dibuja todas las líneas par y sucesivamente todas las líneas impar , que en práctica lleva la frecuencia a 25 Hz, puede en algunos sujetos ser causa desencadenante de crisis epilépticas. Hay disponibles sistemas para reducir este riesgo.
Alta tensión
Los tubos a rayos catódicos son alimentados con tensiones eléctricas muy altas. Estas tensiones también pueden quedar en el aparato por mucho tiempo después de apagarlo y desconectarlo de la red eléctrica. Evitar por lo tanto abrir el monitor o aparatos televisivos a si no se tiene una adecuada preparación técnica y en todo caso adoptando las necesarias precauciones.
Deterioro en el tiempo
Como ocurre en todos los tubos termiónicos, también en el CRT la eficiencia de emisión de electrones de parte del cátodo en el tiempo tiende a disminuir progresivamente, con consiguiente menor luminosidad de las imágenes sobre la pantalla. En los osciloscopios, la consecuencia es una menor luminosidad de la huella. Causa del deterioro, es la alteración de la capa de óxido depositada sobre la superficie del cátodo y la formación sobre la superficie de minúsculos grumos, escorias, consecuencia de los innumerables encendidos y apagados, cuya presencia constituye un filtro al flujo de electrones engendrado. En los años en que el tubo CRT fue de empleo universal, dado el elevado coste por su sustitución, existieron en comercio aparatos llamados "regeneradores", que permitían efectuar una momentánea limpieza de las escorias depositada sobre el cátodo. El método consistía en aplicar una tensión suficientemente elevada, entre el pin unido al cátodo y el pin unido a la primera rejilla cercana a él. El eventual arco voltaico que se formaba, destruía las escorias más consistentes dando por breve tiempo nueva vida al tubo.
Otras tecnologías
Los tubos catódicos se están quedando anticuados, ya que poco a poco las pantallas de plasma y LCD sustituyen a las pantallas de tubo catódico. Estos nuevos tipos de pantallas presentan algunas ventajas, como un tamaño reducido y un menor consumo de energía, aunque también tienen desventajas, como el color negro es mostrado muy claro (por la luz trasera), el tiempo de respuesta es elevado comparado con los CRT, y no muestra los colores de manera uniforme (si se hace que la pantalla muestre un único color, no es uniforme y se ve más oscuro por los bordes del monitor y más claro por el centro). Aunque el tiempo de respuesta es cada vez menor, lo que permite que algunos modelos (por debajo de 12 ms) se puedan utilizar para fines como videojuegos de acción, sin que haya que sufrir estelas en la visualización de movimientos rápidos, lo que hasta el presente era un freno importante para el uso de estas pantallas en ordenadores, aunque en la actualidad tienen un precio bastante elevado comparado con los CRT, especialmente en televisores.
Aplicaciones
La mayor parte de los televisores y monitores de computadora.
Los osciloscopios, espectroscopios y otros instrumentos de medida.
Los rádares.

martes, 13 de mayo de 2008

OMPUERTAS

Una puerta lógica, o compuerta lógica, es un dispositivo electrónico que es la expresión física de un operador booleano en la lógica de conmutación. Cada puerta lógica consiste en una red de dispositivos interruptores que cumple las condiciones booleanas para el operador particular. Son esencialmente circuitos de conmutación integrados en un chip.
Claude Elwood Shannon experimentaba con relés o interruptores electromagnéticos para conseguir las condiciones de cada compuerta lógica, por ejemplo, para la función booleana Y (AND) colocaba interruptores en circuito serie, ya que con uno solo de éstos que tuviera la condición «abierto», la salida de la compuerta Y sería = 0, mientras que para la implementación de una compuerta O (OR), la conexión de los interruptores tiene una configuración en circuito paralelo.
La tecnología
microelectrónica actual permite la elevada integración de transistores actuando como conmutadores en redes lógicas dentro de un pequeño circuito integrado. El chip de la CPU es una de las máximas expresiones de este avance tecnológico.
En
nanotecnología se está desarrollando el uso de una compuerta lógica molecular, que haga posible la miniaturización de circuitos.

Puerta Y (AND)

Símbolo de la función lógica Y a) Contactos, b) Normalizado y c) No normalizado
La puerta lógica Y, más conocida por su nombre en inglés AND, realiza la función booleana de producto lógico. Su símbolo es un punto (·), aunque se suele omitir. Así, el producto lógico de las variables A y B se indica como AB, y se lee A y B o simplemente A por B.
La
ecuación característica que describe el comportamiento de la puerta AND es:
Su
tabla de verdad es la siguiente:
Se puede definir la puerta AND, como aquella compuerta que entrega un 1 lógico sólo si todas las entradas están a nivel alto 1.
Puerta O (OR)

Símbolo de la función lógica O a) Contactos, b) Normalizado y c) No normalizado
La puerta lógica O, más conocida por su nombre en inglés OR, realiza la operación de suma lógica.
La
ecuación característica que describe el comportamiento de la puerta OR es:
Su
tabla de verdad es la siguiente:
Podemos definir la puerta O como aquella que proporciona a su salida un 1 lógico si al menos una de sus entradas está a 1.
Puerta OR-exclusiva (XOR)

Símbolo de la función lógica O-exclusiva. a) Contactos, b) Normalizado y c) No normalizado
La puerta lógica O-exclusiva, más conocida por su nombre en inglés XOR, realiza la función booleana A'B+AB'. Su símbolo es el más (+) inscrito en un círculo. En la figura de la derecha pueden observarse sus símbolos en
electrónica.
La
ecuación característica que describe el comportamiento de la puerta XOR es:
Su
tabla de verdad es la siguiente:
Se puede definir esta puerta como aquella que da por resultado uno, cuando los valores en las entradas son distintos. ej: 1 y 0, 0 y 1 (en una compuerta de dos entradas).
Si la puerta tuviese tres o más entradas, la XOR tomaría la función de suma de paridad, cuenta el número de unos a la entrada y si son un número impar, pone un 1 a la salida, para que el número de unos pase a ser par. Esto es así porque la operación XOR es asociativa, para tres entradas escribiríamos: a (b c) o bien (a b) c. Su tabla de verdad sería:
Lógica negada
Puerta NO (NOT)

Símbolo de la función lógica NO a) Contactos, b) Normalizado y c) No normalizado
La puerta lógica NO (NOT en inglés) realiza la función
booleana de inversión o negación de una variable lógica.
La
ecuación característica que describe el comportamiento de la puerta NOT es:
Su tabla de verdad es la siguiente:
Se puede definir como una puerta que proporciona el estado inverso del que esté en su entrada.
Puerta NO-Y (NAND)

Símbolo de la función lógica NO-Y. a) Contactos, b) Normalizado y c) No normalizado
La puerta lógica NO-Y, más conocida por su nombre en inglés NAND, realiza la operación de
producto lógico negado. En la figura de la derecha pueden observarse sus símbolos en electrónica.
La
ecuación característica que describe el comportamiento de la puerta NAND es:
Su
tabla de verdad es la siguiente:
Podemos definir la puerta NO-Y como aquella que proporciona a su salida un 0 lógico únicamente cuando todas sus entradas están a 1.
Puerta NO-O (NOR)

Símbolo de la función lógica NO-O. a) Contactos, b) Normalizado y c) No normalizado
La puerta lógica NO-O, más conocida por su nombre en inglés NOR, realiza la operación de suma lógica negada. En la figura de la derecha pueden observarse sus símbolos en
electrónica.
La
ecuación característica que describe el comportamiento de la puerta NOR es:
Su
tabla de verdad es la siguiente:
Podemos definir la puerta NO-O como aquella que proporciona a su salida un 1 lógico sólo cuando todas sus entradas están a 0. La puerta lógica NOR constituye un conjunto completo de operadores.
Puerta equivalencia (XNOR)

Símbolo de la función lógica equivalencia. a) Contactos, b) Normalizado y c) No normalizado
La puerta lógica equivalencia, más conocida por su nombre en inglés XNOR, realiza la función booleana AB+A'B'. Su símbolo es un punto (·) inscrito en un círculo. En la figura de la derecha pueden observarse sus símbolos en
electrónica. La ecuación característica que describe el comportamiento de la puerta XNOR es:
Su
tabla de verdad es la siguiente:
Se puede definir esta puerta como aquella que proporciona un 1 lógico, sólo si las dos entradas son iguales, esto es, 0 y 0 ó 1 y 1.


Conjunto de puertas lógicas completo
Un conjunto de puertas lógicas completo es aquel con el que se puede implementar cualquier
función lógica. A continuación se muestran distintos conjuntos completos (uno por línea):
Puertas AND, OR y NOT.
Puertas AND y NOT.
Puertas OR y NOT.
Puertas NAND.
Puertas NOR.
Además, un conjunto de puertas lógicas es completo si puede implementar todas las puertas de otro conjunto completo conocido.

miércoles, 2 de abril de 2008

TRANSISTORES

TRANSISTORES





el transistor es un dispositivo electrónico semiconductor que cumple funciones de amplificador,oscilador, conmutador o rectificador el termino transistor es la contracción en ingles de transfer resistor(resistencia de transferencia) actualmente se los encuentra practicamente en todos los enseres domésticos de uso diario: radios,televisores,grabadores,productores de audio y video, hornos de microondas,lava ropas automáticos,automoviles equipos de refrigeracion,alarmas relojes de cuarzo, computadoras,calculadoras,impresoras,lamparas fluorescentes,equipos de royos x,tomografos,ecografos,reproductores mp3,celulares etc.





El transistor consta de un sustrato (usualmente silicio) y tres partes dopadas artificialmente que forman dos uniones bipolares, el emisor que emite portadores el colector que los recibe o recolecta y la tercera, que está intercalada entre las dos primeras, modula el paso de dichos portadores (base). A diferencia de las válvulas, el transistor es un dispositivo controlado por corriente y del que se obtiene corriente amplificada. En el diseño de circuitos a los transistores se les considera un elemento activo, a diferencia de los resistores,capacitadores einductores que son elementos pasivos. Su funcionamiento sólo puede explicarse mediante mecánica cuántica.


los transistores de efecto de campo,son los que an permitido la interacción a gran escala que disfrutamos hoy en día, para tener una idea aproximada pueden fabricarse varios miles de transistores interconectados por centímetro cuadrado o en varias capas superpuestas.


TIPOS DE TRANSISTORES




Transistor de punta de contacto:Primer transistor que obtuvo ganancia, inventado en 1947 por J. Bardeen y W. Brattain. Consta de una base de germanio sobre la que se apoyan, muy juntas, dos puntas metálicas que constituyen el emisor y el colector. La corriente de emisor es capaz de modular la resistencia que se "ve" en el colector, de ahí el nombre de "transfer resistor". Se basa en efectos de superficie, poco conocidos en su día. Es difícil de fabricar (las puntas se ajustaban a mano), frágil (un golpe podía desplazar las puntas) y ruidoso. Sin embargo convivió con el transistor de unión (W. Shockley, 1948) debido a su mayor ancho de banda. Hoy día ha desaparecido.


transistor de union bipolar:BJT por sus siglas en inglés, se fabrica básicamente sobre un monocristal de Germanio, Silicio o Arseniuro de Galio, que tienen cualidades de semiconductores, estado intermedio entre conductores como los metales y los aislantes como el diamante. Sobre el sustrato de cristal se contaminan en forma muy controlada tres zonas, dos de las cuales son del mismo tipo, NPN o PNP, quedando formadas dos uniones NP.

la zona N con elementos donantes de electrones (carga negativas) y la zona P de aceptadores o huecos (cargas positivas),normalmente se utilizan como elementos aceptadores P al indio (ln), aluminio (Al) o galio (Ga) y donantes N al arsenico (As) o fosforo (P).